
Compiling PHP Applications for the
Microsoft .NET Platform

Jan BENDA, Martin MALÝ, Tomáš MATOUŠEK, Pavel NOVÁK, Václav NOVÁK,
Ladislav PROŠEK

UK v Praze – Matematicko-fyzikální fakulta,
Ke Karlovu 3, 121 16 Praha 2

jbe@matfyz.cz, mmaly@centrum.cz, matousek@havit.cz,
novak.pavel@seznam.cz, jarema@seznam.cz,

ladislav.prosek@matfyz.cz

Vedoucí práce: RNDr. Vojtěch Jákl

Abstract. This document describes the problems related to compilation of the
PHP language and their solution proposed and implemented in the PHP.NET
software project. Main focus is given to the specific PHP language features
bound to the interpretative nature of the PHP language, that are making the
compilation process more difficult or less effective. The second part of this
document describes the main features and application scenarios of the
PHP.NET project, which implements such compiler for the Microsoft .NET
Framework and allows deployment of existing PHP applications on an
ASP.NET web server. The advantages resulting from the usage of this project
are described and finally the effectiveness is demonstrated in a comparison with
existing products addressing the PHP application optimization.

Keywords: PHP language, .NET Framework, compiler, web applications,
ASP.NET, Visual Studio Integration.

1 Preface
PHP is the most popular language for web application development because of its ease
of use and availability. On the other hand, the interpretation of web application scripts
yields to sub-optimal performance and the scalability and manageability of complex
PHP applications is problematic.

Our project is not the first one to address this issue. One of the possible
optimizations is script preprocessing – converting PHP source code into some form of
byte code to speed up the run-time interpretation. The Zend Performance Suite
(www.zend.com/store/products/zend-performance-suite.php), commercially available
from the PHP authors, is an example of such approach. It is an important optimization
but the resulting performance is still a little beyond native code execution.

There is currently one product compiling PHP scripts to the native code – the
RoadSend compiler (www.roadsend.com), which only supports PHP4 with a very
limited set of run-time libraries.

The only existing PHP language compiler with support to PHP5 and all PHP
runtime libraries is the PHP.NET project covered in this paper. This project

Student 2004, Praha, pp. 1-8.

 Compiling PHP Applications for the .NET Platform

introduces the PHP5 language to the family of .NET languages and among other
offers all the PHP functions to other .NET applications regardless to the programming
language. The paper focuses on how specific PHP language constructs are compiled
by the PHP.NET compiler to reach high speed of the resulting code. The reached
performance is demonstrated at the end of this document in a benchmark comparison
with the two existing products stated above.

2 PHP Language Compilation
The PHP language is a procedural language originally developed to be processed by
an interpreter. This is why some features cannot be compiled straightforwardly. The
difficulties with compiling the PHP language and our proposed solutions are presented
in this chapter. We assume the reader to be familiar with the PHP language as
described in [2] and the .NET Framework. An explanation of that is beyond the scope
of this paper.

2.1 Script Compilation

A PHP script is a compilation unit in the PHP.NET. It consists of snippets of HTML
and PHP code one penetrating the other, with the code enclosed in a special type of
tags. The pieces of HTML code outside the PHP brackets are treated as if they were
printed out by the PHP code.

The script thus consists of a sequence of statements for the compiler. These
statements may be class or interface declarations, which are compiled to separate .
NET classes or interfaces respectively, or function declarations and other non-
declarative statements, which are compiled into a single script type (CLI type1). This
type is not intended to be instantiated nor inherited. It contains public static methods
corresponding to the functions declared in the script and one public static method
containing all the non-declarative statements of the script (i.e. this method contains the
global code - the code that is not contained by any function or class declaration and is
supposed to be run when the script is executed).

All the functions and objects declared in a script and the global code are executed
in a common script context. This is an object, associated with the running script,
keeping trace of the script state – the defined constants, global variables etc.

2.2 Declarations

A declaration of function, class or interface stated directly in the global code (i.e. not
enclosed in another declaration or statement) is called unconditional. In addition to
this common usage, PHP allows you to place declarations inside for example an if-
then-else statement or a function or method body. Such a declaration is called
conditional because it depends on run-time conditions whether and when it takes an
effect.

Once a declaration is evaluated it cannot be undone and redeclaration is not
allowed. However, several declarations of the same entity (function, class or interface)

1 CLI stands for Common Language Infrastructure [1]. The abbreviation is used in this paper
to distinguish between the source PHP language elements and the resulting elements of the
CLI.

Jan Benda, Martin Malý, Tomáš Matoušek, Pavel Novák, Václav Novák, Ladislav Prošek

using the same name may be stated in a code provided that they are all conditional
except for at most one. These different declarations are referred to as versions. Such
declarations are maintained by the PHP.NET run-time ensuring that at most one
version if each entity is actually declared.

The names of all conditional declarations are mangled in order to comply with the
rules given by CLI on type and method names (e.g. two types in the same namespace
as well as two methods of the same type having the same signature must have different
names).

If there is an unconditional version of a declaration, all the conditional ones can be
disregarded (a code reporting a redeclaration fatal error is emitted at the place of
conditional declarations). Otherwise, if there are conditional declarations only, it has
to be decided at run-time which one takes effect and when. There is one hashtable for
functions, containing delegates representing the actual function declaration, and one
hashtable for classes and interfaces, containing type objects representing the actual
ones. Both these hashtables are created for each request and are hashed by the
declaration identifiers. A multi-version function call operator then looks up the table
and calls the correct version via the delegate found there. Analogously, the new
operator looks up the hash table and instantiates the correct version of the type.

2.3 Inclusions

The PHP language contains several inclusion statements. Their original behavior is
similar to that all the code contained in the included script is populated into the
including one. This is undesirable for a compiled language. The compiler processes
the individual scripts separately enabling reuse of compiled modules without the need
of repeated processing.

An inclusion whose argument can be determined at compile-time is resolved
immediately (this is called a static inclusion) otherwise it is deferred to run-time
(dynamic inclusion). Scripts included dynamically are bound with an including one at
run-time which is, of course, slower that compile-time binding. However, many PHP
libraries use inclusion expressions that are not evaluable at compile-time yet have a
common pattern. To avoid the impact of dynamic inclusion slow down, it is possible
to configure the compilation of such library so that the inclusions matching a given
pattern could be treated as static.

Similarly to a declaration, an inclusion can also be either conditional or
unconditional. All unconditional declarations contained in an unconditionally included
script are also unconditional with respect to the including script. Other declarations
are conditional with respect to the including script. This rule is transitive, i.e. applies
also to inclusions contained in the included script. In a case of a deferred conditional
inclusion, unconditional declarations contained in the included script are converted to
conditional ones at run-time by a helper method emitted to each script.

2.4 Variables

Global variables are stored in a hashtable global for the current request. Both direct
and indirect access is thus performed similarly to the original PHP interpreter – using
a hashtable lookup. There is no much optimization applicable to the global variables.

The local variables are accessible only inside the function where they are declared.
It is often possible to compile the known local PHP variables to local variables of the

 Compiling PHP Applications for the .NET Platform

resulting CLI methods, which is a very common and important optimization,
especially when addressing recursion, because hash tables for local variables are not
created in a function prologue. In some rare cases a list of local variables is needed to
be available at run-time. This only happens when a function contains an eval or an
assert construct, an inclusion or a call to a variable manipulating function (either
direct or possible via an indirect call). In such case a hashtable of local variables,
which is similar to that of the global ones, has to be created in the function prologue.

The important fact is that indirect variable access is not an obstacle to the
optimization of local variables. In the case of optimized local variables, an indirect
access is compiled as a switch over the compile-time known variable names. Only
when an unknown variable is written to, a hashtable is created as described above.

2.5 Functions and Methods

User functions are compiled as public static methods of the containing script type.
User methods are compiled as appropriate methods of the CLI type representing the
corresponding user class. There are in fact two overloads for each user function or
method: one argument-full implementation and one argument-less stub.

The argument-full overload is used in calls that know the target method (when the
respective function has an unconditional declaration). This overload has a signature
containing all the user-defined formal arguments. The argument-full overload contains
the compiled code of the user function prepended by a prologue initializing the
function arguments and variables (performing deep copies, type hint checks etc.).

There are several cases when a compiler has to generate a call to a function, whose
signature is not known (for example a call to a function having multiple versions, to a
method of an unknown object or an indirect function or method call). All these cases
are addressed by the argument-less overloads, whose task is to copy the function
arguments from an internal stack to the evaluation stack and call the argument-full
implementation. The internal stack is a pre-allocated resizable array associated with
the script execution context.

Every function and method can access the script state stored in the script context.
The relationship between a user function and the containing script is similar to that
between a method and the containing instance. A script context can be regarded to as
an entity that is very similar to this (or self) keyword used by class languages in
general. The current context is passed to compiled user functions and static methods
as the first parameter. Instance methods access the script context using an instance
field. Note that PHP instance methods now have two contexts, one of which is the
script context and the other one is the context of the actual instance.

2.6 Object Oriented Features

The PHP is a class-based object-oriented language supporting run-time modification
of instance fields. The PHP.NET compiler supports the entire object model proposed
by PHP5.

PHP classes and interfaces are represented directly by corresponding .NET classes
or interfaces respectively, preserving the inheritance hierarchy. The common base
class for PHP classes implements much of the PHP specific behavior, such as by-
name field access and method invocation, serialization, object dumping and
comparing etc. Compiled PHP classes can be easily reused by any other .NET

Jan Benda, Martin Malý, Tomáš Matoušek, Pavel Novák, Václav Novák, Ladislav Prošek

language. Implementing PHP to be able to consume external classes would be much
more complicated (because of additional functionality supported by the PHP object
model) and will be considered to be implemented in the next versions of the project.

The PHP language supports instance field declaration in the class declaration.
Such members are compiled as instance fields of the resulting .NET class. A method
giving a fast indirect access to these fields is emitted in each class with at least one
instance field declared. Instance fields created at run-time are stored in a hashtable
associated with the instance.

When a field is accessed within a method using the $this pseudo-variable and the
corresponding field is found at compile-time, code is emitted that accesses it directly.
Otherwise the lookup has to be deferred to run-time by emitting operator invocation.
When a field is accessed using an ordinary variable, operator invocation is always
emitted. All object and class operators receive a type handle specifying the class
context in which the operation is performed, which is used to make visibility checks to
decide whether protected and private fields are visible for the caller.

Method compilation has been already described together with functions. The only
difference is that instance methods do not contain the explicit script context argument.
The script context is referred to by a field of the respective instance set in a
constructor.

There are two kinds of method invocation in PHP. A virtual invocation denoted by
“->” (hyphen, greater than sign), and a non-virtual invocation denoted by “::” (double
colon). In the first case the operator invocation is emitted to find the correct method,
while in the second case direct invocation of the corresponding method is emitted.

3 Language Run-time Framework
The PHP contains hundreds of functions available to the PHP script programmers.
These functions may be divided into two main categories:

 built-in functions – the most commonly used functions implemented directly
by the original PHP interpreter, and

 external function – additional functions added to the PHP interpreter via
dynamic libraries often implemented by third parties.

3.1 The Class Library – Built-in Function Repository

The Class Library is a functional counterpart to the PHP language compiler
providing implementations of the built-in functions and classes for the compiled PHP
scripts. This library is designed to be language independent and thus reusable from
any .NET language. The library functions are implemented in the C# as public static
methods logically grouped to encapsulating CLI classes. The semantics of PHP
functions required for the PHP language is added by the compiler using meta-data
associated with the method implementations. Given an assembly containing function
implementations, the run-time generates a separate assembly with argument-less stubs,
exploited by indirect function calls. This procedure is performed only once and can be
done manually using a command line tool.

The Class Library can be easily extended with new function and class implement-
ations in additional assemblies complying with some basic design rules. These rules

 Compiling PHP Applications for the .NET Platform

restrict the set of usable variable types (to the types known to the compiler), define
custom metadata usable on methods to influence the way how the compiler will emit
the call to the function (e.g. which arguments have to be deeply copied) etc.

3.2 The Extensions – External Function Repositories

The external functions are implemented in the PHP in dynamically linked libraries.
These libraries are loaded to the PHP interpreter address space and communicate with
PHP using a predefined set of functions (called Zend API).

All PHP extension libraries are now available to .NET applications using an
intermediating component of the PHP.NET called Extension Manager, which
emulates the original PHP interpreter providing the necessary API to the extensions.
This solution enables not only the PHP scripts but also any other .NET language to
access the functionality of any PHP extension using a unified approach.

The original dynamic libraries are encapsulated using a managed wrapper.
A managed wrapper is a tool-generated assembly comprising of stubs representing
functions contained in the corresponding extension. These stubs have signatures of the
implemented functions and contain a code that transforms arguments to native PHP
structures, performs the actual call to the PHP extension and transforms the results
back to a managed form.

Because PHP extension dynamic libraries don’t contain type information,
additional XML files describing function signatures are used by the wrapper
generator. The generator analyses the dynamic library, adds the type information and
emits managed (argument-full) stubs into the resulting assembly. The argument-less
stubs are also generated to allow indirect calls from PHP compiled code.

Using the managed wrappers, the native implementations of external functions are
completely hidden to outside managed world so the caller needn’t to care about that
the functionality is actually implemented in a native dynamic library. Hence, the actual
library implementation can be replaced with a managed one anytime without
modification of the calling code.

There are two modes of loading PHP extensions using the Extension Manager:
collocated and isolated. An application or a web server administrator may configure
individual extensions depending on their reliability preferring either performance or
safety.

Trusted extensions may be collocated in the application’s or web server’s process
address space in the same application domain as the compiled PHP code which leads
to 5 to 10 times faster execution. Stubs then only convert managed data to native PHP
structures and back.

Untrustworthy extensions may be loaded to an isolated process. The main process,
where the compiled PHP code is executed, is then protected from being damaged or
even crashed by an unmanaged code. The main process communicates with the
isolated one via .NET Remoting using a shared memory channel also implemented in
our project.

3.3 ASP.NET Cooperation

Since PHP scripts usually constitute web applications, a run-time support for web
environment is needed. A PHP web application comprises of a set of scripts and other
data files stored in a virtual directory on the IIS web server. This directory should be

Jan Benda, Martin Malý, Tomáš Matoušek, Pavel Novák, Václav Novák, Ladislav Prošek

configured as ASP.NET application. The PHP.NET provides a module serving web
requests and configures the ASP.NET to use it. We decided to integrate into
ASP.NET server to take advantage of some its features. Those are for example
watching source code and configuration changes, managing hierarchical per directory
configuration and sophisticated session handling.

On a request to a PHP.NET application, an object called request handler is
created to process the request. It first checks the compilation cache (a directory where
compiled script assemblies are stored). If a cached compilation of the requested script
is found there, it is loaded (if not already in the memory) and executed. Otherwise,
a compiler is executed to create the compilation and store it into the cache. The
response is always generated by the script compilation. If a script is requested
frequently, it resides in memory in a form of just-in-time-compiled native code and the
execution is thus really fast as it can be seen from the following benchmarks.

4 Benchmarking the PHP.NET
The following chart compares the PHP.NET with the PHP version 4.3.7. The
performance has been measured by the Microsoft Web Application Stress Tool using a
sample application from real life containing HTML forms and generated content. The
vertical axis displays average number of served requests per second. It is evident that
the PHP.NET beats the original PHP in terms of performance regardless to the web
server and even with the Zend Performance Suite (ZPS, which is a commercial
product of the Zend Inc.) taken into account.

0
50

100
150
200
250
300

PHP.NET
IIS

PHP 4.3.7
IIS

PHP 4.3.7
IIS ZPS

PHP 4.3.7
Apache

PHP 4.3.7
Apache ZPS

The second graph displays the results of some computation-based benchmarking
scripts (shipped with the RoadSend compiler). The horizontal axis represents script
execution time in seconds (less values denote better results).

 Compiling PHP Applications for the .NET Platform

0 5 10 15 20 25 30

Integer Array Indexing

File Line/Character Counting

String Array Indexing

Random Number Generation

Sieve of Eratosthenes

File Line Order Reversing

Matrix Multiplication

Heapsort

Ackermann Function

Fibonacci Numbers

Nested Loops

String Concatenation

PHP.NET

Roadsend

PHP 4.3.7

5 The Visual Studio .NET Integration Add-On
The Visual Studio .NET 2003 supports integration of additional languages into the
editor environment. Our integration package introduces a specific PHP project type
with syntax highlighting. The compiled PHP executables can be run and even traced
from the VS.NET environment using the generated debug information.

6 Conclusion
Our project proved that PHP compilation is feasible and brings important performance
improvements as expected. We provided a functional tool allowing deployment of
existing PHP applications without any modification on an ASP.NET web server
increasing the throughput up to four times comparing to the original PHP interpreter.
In addition we provided the .NET programmers with several hundreds of useful PHP
functions and gave the PHP application developers the ability to manage PHP
applications inside Microsoft Visual Studio 2003.

References

1. CLI Standard: ecma-international.org/publications/standards/Ecma-335.htm
2. Bakken, S. S., Schmid E.: PHP Manual; www.php.net/manual/

